

Probiotic based health foods

Sampo Lahtinen Danisco A/S Health & Nutrition Kantvik, Finland

History of probiotic foods

DANISCO First you add knowledge...

- First fermented foods from Neolithic Era (farming, pottery)
- Persian tradition claims that Abraham owed his longevity and fertility to fermented foods
- Metchnikoff: yoghurt is the secret of the longevity of Bulgarian peasants
- ➔ In 1917, Alfred Nissle isolated a strain of *E. coli* from enterocolitis-resistant WW I soldier
- In 1930's, Dr Minoru Shirota introduced a milk drink fermented with specific Lactobacillus casei
- In the USA, L. acidophilus NCFM was introduced in the 1970's

Probiotic food market

- Rapid expansion over last two decades
 - Growth rate in 2008 between 5-30 % depending on region, product type
- Over half of probiotic market is with foods
 - Supplements 30-40%
 - Pharmaceuticals < 10%
- → Main types of probiotic foods (estimated Worldwide market, \$US million)
 - Probiotic yoghurt; 4,000 Mi \$US (mainly *Bifidobacterium*, *L. acidophilus*)
 - Probiotic drinks; 2,000 Mi \$US (shots, juices, kefirs etc.)
- → Main health targets and claims:
 - Gut health
 - Immune health
 - General well-being
 - Mainly "soft claims" if any, less claims related to reduction of disease risks
 - Regulation of claims vary between regions

Requirements of probiotic foods

"Live micro-organisms which when administered in adequate amounts confer a health benefit on the host"

FAO/WHO 2002

- ➔ Technological properties of probiotic strains
 - Growth in large-scale production
 - Stability of the batch culture
 - Fermentation with starter cultures or probiotics?
 - Stability in the final product
- ➔ Safety of the probiotic
- ➔ Consumer acceptance
 - Taste
 - Healthy image
 - Price
- → Adequate dose not well defined; at least 10⁹ live cells per dose
- Documentation of health benefits? Always strain-specific

Requirements of probiotic foods

DANISCO First you add knowledge...

Stability in foods during storage is a key requirement

- Stability depends on:
 - Food matrix
 - Storage temperature
 - pH, acidity
 - Oxygen, radicals
 - Antimicrobial compounds
 - Water activity
 - Exposure to light
 - Salt content
 - Other microbes...
- Labels and claims
 - Strain identity
 - Probiotic level
 - Health claims?

Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms

JMT Hamilton-Miller^{1,*}, S Shah¹ and JT Winkler²

¹Department of Medical Microbiology, Royal Free and University College Medical School, London NW3, UK: ²Food and Health Research, 28 St Paul Street, London N1, UK

Submitted 21 August 1998: Accepted 1 October 1998

Probiotic stability: Viability vs Culturability?

Probiotic viability normally assessed by traditional culture methods

- → Sometimes probiotics may stop growing on plates but remain viable
 - "Viable but nonculturable", VBNC
 - Response to storage stress / injury?
 - \rightarrow Culture-dependent methods may yield incorrect information on true viability
- New methods for assessing viability culture-independently
 For example, fluorescence-based methods (flow cytometry, microscopy)

Lahtinen et al (2006) Appl Environ Microbiol 72(7): 5132-5134 Lahtinen et al (2005) Appl Environ Microbiol 71(3): 1662-1663

Improving stability of probiotics

DANISCO

➔ Encapsulation of viable probiotics

- Numerous approaches and carriers
 - Extrusion vs. Emulsion
 - Alginate, Carrageenan, Locust bean gum
 - Cellulose acetate phthalate (CAP)
 - Chitosan
 - Gelatin
 - Starches
 - Lipid encapsulation
 - Emulsions of oils, proteins, carbohydrates
- Probiotic straws
 - + other ways of avoiding need for cold storage

Stand-alone HOWARU™ Straw

On-pack HOWARU[™] Straw

Examples of probiotic foods: Dairy

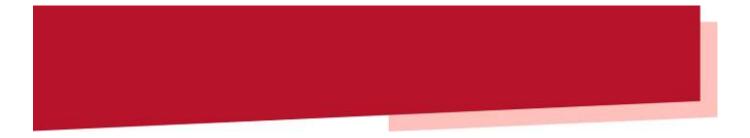
Most common probiotic foods

- ➔ Fermented dairy products:
 - Yoghurt (spoonable, drinkable, shots...)
 - Dahi, kefir, others
 - Cheese (long storage)
- Non-fermented dairy drinks ("sweet milk")
- ➔ Probiotic ice cream
- ➔ Probiotic margarine

Examples of probiotic foods: Non-dairy

- Fruit and berry juices (non-fermented) around the World
 - pH
 - antimicrobial compounds?
- Fermented vegetable juices and "yoghurts"
 - Tomato, carrot juice
 - Soy yoghurt, oat yoghurt
- Natto in Japan
- Probiotic olives have been developed in Italy
- Probiotic salami marketed in Germany
 - Long term storage
 - High salt content, low water activity

Examples of probiotic foods: Non-dairy



Probiotic bread

- Lactobacillus used in traditional sour-dough bread
- Can probiotics survive baking?
- Probiotic potato chips (Spain)
 - Survival? Healthy food?
- Probiotic muesli
- Nutrition bars
- Probiotic chocolate
 - Coating for probiotics?
- ➔ Oat-based probiotic dip

- Probiotic food market and probiotic research growing rapidly
- Probiotic foods dominated by dairy products (yoghurt)
- New products and product types launched continuously
 - Technological feasibility? Including stability of probiotics during storage
 - Consumer acceptance (e.g. price, healthy image of products...)?
- → Main requirements for probiotic foods:
 - Stability, dosage, technological feasibility
 - Safety, documented health benefits
 - Consumer acceptance, claims, regulations
- New innovations in:
 - Improvement of probiotic stability during storage
 - Assessment of stability / viability of probiotics in foods

Thank you for your attention!

